矿山生态修复有哪些新技术?
6)用推土机平整内排土场第i-1条带的复垦土壤———剥离物,构成了以第i+1条带上部较疏松土层(B和C层土)的剥离物为心土层、以第i条带下部较硬岩层的剥离物为新下部土层的复垦土壤。
1)剥离表土。在开釆第i条带前,用推土机超前剥离表土并推存于开釆掘进的通道上。一般剥离厚度为20~30厘米,同时也应超前剥离2~3个条带,即第i+1,i+2,i+3条带。
丛枝菌根真菌能够产生一种被称为球囊霉素相关土壤蛋白(简称"球囊霉素")的含有金属离子的专性糖蛋白,可产生于根内菌丝和伸展在根围土壤中的根外菌丝表面,在土壤生态系统中含量不低。球囊霉素可增加土壤有机碳库,增强土壤团聚体的稳定性,改善土壤结构与质量(贺学礼等,2011;黄艺等,2011)。球囊霉素一方面通过自身特点将土壤颗粒黏结在一起,达到增加土壤团聚体的目的;另一方面可间接改善土壤微环境,增加土壤中有益微生物的含量,实现退化土壤的改良。球囊霉素是丛枝菌根真菌对其寄主植物生长环境的调整和适应,是微生物活动的一种积极应答机制,已证实土壤中球囊霉素量与土壤凝结稳定性、土壤含水性呈正相关。接种丛枝菌根真菌有利于土壤水分的保持与高效运输,提高水分的利用率,有利于缓解干旱对作物生长的影响(李少朋等,2013)。采煤沉陷区土壤结构被扰动,丛枝菌根真菌如何改善土壤结构,协调水肥供应,也是生态修复需要深入探讨的问题之一。
现有的植物修复措施需要考虑众多因素,如植物抗逆性、生态适应性、植物多样性、先锋植物持续稳定性、乡土植物与外来植物相结合、场地的分区以及功能合理性的原则等。首先,植物需要有足够的抗逆性,只有具有一定抗逆性的植物才具有较强的生命力,在后期无人养护的条件下才能够实现自我维持。
3)用巨大的剥离铲剥离经步骤2)疏松的第i条带的下部较坚硬岩石,并堆放在内侧的釆空区上(即第i-1条带上)。
人工生态系统是指经过人类干预和改造后形成的生态系统,其易受人类社会的强烈干预和影响,且不稳定,易受各种环境因素的影响,并随人类活动而发生变化,自我调节能力差,并且系统本身不能自给自足,依赖于外系统,并受外部的调控。同时,生态系统运行的目的不是为维持自身的平衡,而是为满足人类的需要。所以人工生态系统是由自然环境(包括生物和非生物因素)、社会环境(包括政治、经济、法律等)和人类(包括生活和生产活动)三部分组成的网络结构。人类在系统中既是消费者又是主宰者,人类的生产、生活活动必须遵循生态规律和经济规律,才能维持系统的稳定和发展。
4)用可与剥离铲在矿坑内交叉移动的大斗轮挖掘机(BWE),挖掘第i+1条带上部较松软的土层(B和C层土),并覆盖在第i-1条带内经步骤3)操作而形成的新下部岩层———较硬岩层的剥离物。
在这种层面上考虑修复技术,目前已衍生出较新的修复方法,它们直接通过动植物、微生物进行矿区修复,在修复"材料"选取上与直接替换土壤、大量施肥等方法产生了区别。
预复垦、超前复垦、动态复垦与边开采边修复既有联系,又有区别。预复垦、超前复垦和动态复垦往往仅针对一个采煤工作面或采区进行探讨,且主要是考虑既定采矿计划前提下的复垦措施,而边开采边修复技术从整个矿山开采过程的角度出发,不仅提出何时、何地、如何修复,而且指导整个采矿生产,是地上和地下措施的有机耦合。因此,边开采边修复的概念和内涵比预复垦、超前复垦和动态复垦的更大、更深刻,但预复垦、超前复垦和动态复垦的已有研究为开展边开采边修复研究奠定了基础,也是边开采边修复技术体系的重要组成部分。现阶段边开采边修复主要还是基于井下采矿工艺和时序进行的修复方案的优选,未来将逐渐过渡到井下采矿与井上修复的同步进行。
动态预计通过构造合适的时间影响函数与静态下沉做乘积即可得到点位的动态下沉。时间影响函数多基于"塌陷从0开始,增长到静态下沉预计值""单点下沉速度先增大后减小""速度曲线连续,且关于下沉速度处对称"3条规律构造。
式中:W0(x)和W0(y)为走向和倾向有限开采时,主断面地表下沉值;W0为充分采动条件下地表下沉值;m为采厚;q为下沉系数;α为煤层倾角;l和L为走向和倾向有限开采时的计算长度(考虑拐点偏距后的长度);r1,r2和r分别为下山、上山和走向的主要影响半径。
根据前述计算获得的动态下沉值,结合事先获得的数字地形图,可进行高潜水位边采边复布局。关于高潜水位边采边复的复垦时机抉择,有多种准则与实现方法,具体与实际工程条件与需要相关,具有不同的施工土方量,在此不赘述。
仿自然地貌更加注重当地原有的生态系统,尽可能接近原有地貌。首先是基于景观生态学,根据斑-廊-基原理、景观格局优化原理、多样性与异质性原理等,在重建过程中增大景观多样性与异质性,规划基质与斑块组成较优的景观格局。
其次,植物需要能够形成稳定的目标植物群落,达到植被恢复、生态修复的目的,其对于整个目标生态系统需要具有生态适应性,它不能是孤立于整个目标生态系统的植物类型。同时,挑选植被需要更多样。
由于工作面开采并非一蹴而,前后垮落时间为ti的两块不同单元显然在时刻t的时间影响函数值不同,动态预计过程需要离散化塌陷区段。为了方便计算,我们通常将工作面的整个垮落离散成一系列足够小的单元,分别按其静态下沉与到计算时刻的时间计算动态下沉,加和所有单元。
微生物修复技术是矿区土壤管理与改良的重要生物技术。利用微生物群落的优势,可以促进植物生长和植被覆盖,减少或避免土壤侵蚀,从而达到生态恢复的目的。微生物修复技术可以利用植物根际微生物的生命活动来改善植物营养条件,并同时促进植物生长和发育。随着植物修复和微生物修复的发展,矿区土壤的渗透性显著提高,其改善的土壤调节和地表径流转化能力,可以防止土壤侵蚀,改善河流水文条件。微生物在有机物质的分解、合成和转化,无机物质的氧化和还原过程中起着重要作用。它们是土壤生态系统代谢的重要驱动力,可以提高土壤肥力,使生土熟化,缩短复垦周期。
同时,磷在菌丝里移动的速度为在植物体内运输速率的10倍,保证将在根外吸收的磷等营养元素及时运输给植物。菌丝对磷的亲和力较高,可减少磷解吸的临界浓度,且丛枝菌根真菌释放有机酸和磷酸酶可促进土壤磷释放。
乡土植物:能更好地适应当地气候环境,在较为恶劣的生境以及简单粗放的管理条件下仍能表现出植物的生物学特性,但是生长缓慢。
露天矿边采边复的核心技术是土壤重构技术。土壤重构即重构土壤,是以工矿区破坏土地的土壤恢复或重建为目的,采取适当的采矿和重构技术工艺,应用工程措施及物理、化学、生物、生态措施,重新构造一个适宜的土壤剖面与土壤肥力条件以及稳定的地貌景观的方法。土壤重构所用的物料既包括土壤和土壤母质,也包括各类岩石、矸石、粉煤灰、矿渣、低品位矿石等矿山废弃物,或者是其中两项或多项的混合物,只要在较短的时间内可恢复和提高重构土壤的生产力,并改善重构土壤的环境质量,是有效的重构材料。
恢复植物的选择要适应当地的地质、水文、土壤类型等,还要考虑因开采造成的具体情况,因地制宜选取植物,对当地土壤起到较好的改良,并能进行生态演替,不同植物产生的恢复效益存在差异。
图3-6为边开采边修复时土地恢复示意图,其中图3-6a为边开采边修复的动态过程,在土地即将沉入水中或部分沉入水中(仍存在抢救表土的可能性)时预先分层剥离部分表土与心土,交错回填将要沉陷的区域,即图中的取土区与充填区。图3-6b为边开采边修复的终状态,通过边开采边修复可形成终的复垦土地区A,B,C区。可见,边开采边修复较沉陷稳定后的复垦,可多复垦出区域C,土地恢复率有较大提升。
菌根技术是微生物复垦技术的一种应用,可以改善生态系统的多样性,促进矿区极端条件下植被的恢复,促进矿区环境的良性循环,形成互利共生的微生物,改善生态系统的多样性,加快二次生育的速度生态系统的演替,减轻根系对植物生长的影响,并施肥土壤,促进植物矿质营养。对矿区生态恢复和土地复垦吸收利用促进生态系统功能的改善具有重要的现实意义。其中,丛枝菌根真菌(AMF)是常用也是土壤重要的微生物之一,能与80%以上的陆生植物形成互惠共生关系,提高矿区生态系统的多样性,促进生态系统功能的稳定与提高,在矿区复垦过程中得到广泛的应用。我们在此主要谈论常用的丛枝菌根真菌修复。
pre:矿山生态修复典型案例next:山东推进五类煤矿有序退出 退出产能162万吨